Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mosca, Luciana (Ed.)Over the years, the global disease burden of neurological disorders (NDs) and mental disorders (MDs) has significantly increased, making them one of the most critical concerns and challenges to human health. In pursuit of novel therapies against MD and ND, there has been a growing focus on nutrition and health. Dietary sulfur, primarily derived from various natural sources, plays a crucial role in numerous physiological processes, including brain function. This review offers an overview of the chemical composition of several natural sources of the sulfur-rich substances such as isothiocyanates, sulforaphane, glutathione, taurine, sulfated polysaccharides, allyl sulfides, and sulfur-containing amino acids, all of which have neuroprotective properties. A multitude of studies have documented that consuming foods that are high in sulfur enhances brain function by improving cognitive parameters and reduces the severity of neuropathology by exhibiting antioxidant and anti-inflammatory properties at the molecular level. In addition, the growing role of natural sulfur compounds in repairing endothelial dysfunction, compromising blood–brain barrier and improving cerebral blood flow, are documented here. Furthermore, this review covers the encouraging results of supplementing sulfur-rich diets in many animal models and clinical investigations, along with their molecular targets in MD, such as schizophrenia, depression, anxiety, bipolar disorder, and autism spectrum disorder, and ND, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS). The prospects of natural sulfur compounds show great promise as they have potential applications in nutraceuticals, medicines, and functional foods to enhance brain function and prevent diseases. However, additional research is required to clarify the mechanisms by which it works, enhance its bioavailability, and evaluate its long-term safety for broad use.more » « lessFree, publicly-accessible full text available April 9, 2026
-
Renewable 1,3-butadiene (1,3-BD, C4H6) was synthesized from the tandem decyclization and dehydration of biomass-derived tetrahydrofuran (THF) on weak Brønsted acid zeolite catalysts. 1,3-BD is a highly solicited monomer for the synthesis of rubbers and elastomers. Selective conversion of THF to 1,3-BD was recently measured on phosphorus-modified siliceous zeolites (P-zeosils) at both high and low space velocities, albeit with low per-site catalytic activity. In this work, we combined kinetic analyses and QM/MM calculations to evaluate the interaction of THF with the various Brønsted acid sites (BAS) of Boric (B), Phosphoric (P), and Sulfuric (S) acid modified silicalite-1 catalysts toward a dehydra-decyclization pathway to form 1,3-BD. Detailed kinetic measurements revealed that all three catalysts exhibited high selectivity to 1,3-BD ca. 64–96% in the order of S-MFI > P-MFI > B-MFI at a given temperature (360 °C). Notably, the S-MFI maintained a selectivity >90% for all evaluated process conditions. The computational results suggested that the nature of the Brønsted acid sites and the adsorption energetics (relative THF-acid site interaction energies) are distinct in each catalyst. Additionally, the protonation of THF can be improved with the addition of a water molecule acting as a proton shuttle, particularly in S-MFI. Overall, S-containing zeosils exhibited the ability to control reaction pathways and product distribution in dehydra-decyclization chemistry optimization within microporous zeolites, providing another alternative weak-acid catalytic material.more » « less
-
1,3-Pentadiene (piperylene) is an important monomer in the manufacturing of adhesives, plastics, and resins. It can be derived from biomass by the tandem ring-opening and dehydration (dehydra-decyclization) of 2-methyltetrahydrofuran (2-MTHF), but competing reaction pathways and the formation of another isomer (1,4-pentadiene) have limited piperylene yields to <60%. In this report, using detailed kinetic measurements of 2-MTHF dehydra-decyclization on zeolites with disparate acidities (boro-, and alumino-silicates) and micropore environments (MFI, MWW, and BEA), weakly acidic borosilicates were shown to exhibit ca. 10–30% higher selectivity to dienes at about five-to-sixty times lower proton-normalized rates than aluminosilicates (453–573 K). Dehydra-decyclization site time yields (STYs) were invariant for aluminosilicates within the investigated frameworks, indicating the absence of pore-confinement influence. However, individual site-normalized reaction rates varied by almost an order of magnitude on borosilicates in the order MWW > MFI > BEA at a given temperature (523 K), indicating the non-identical nature of active sites in these weak solid acids. The diene distribution remained far from equilibrium and was tuned towards the desirable conjugated diene (1,3-pentadiene) by facile isomerization of 1,4-pentadiene. This tuning capability was facilitated by high bed residence times, as well as the smaller micropore sizes among the zeolite frameworks considered. The suppression of competing pathways, and promotion of 1,4-pentadiene isomerization events lead to a hitherto unreported ∼86% 1,3-pentadiene yield and an overall ∼89% combined linear C5 dienes’ yield at near quantitative (∼98%) 2-MTHF conversion on the borosilicate B-MWW, without a significant reduction in diene selectivities for at least 80 hours time-on-stream under low space velocity (0.85 g reactant per g cat. per h) and high temperature (658 K) conditions. Finally, starting with iso-conversion levels ( ca. 21–26%) and using total turnover numbers (TONs) accrued over the entire catalyst lifetime as the stability criterion, borosilicates were demonstrated to be significantly more stable than aluminosilicates under reaction conditions (∼3–6× higher TONs).more » « less
-
Abstract Synthesis of a pentasil‐type zeolite with ultra‐small few‐unit‐cell crystalline domains, which we call FDP (few‐unit‐cell crystalline domain pentasil), is reported. FDP is made using bis‐1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di‐quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five‐carbon nitrogen‐connecting chain, in place of the six‐carbon connecting chain SDAs that are known to fit well within the MFI pores. X‐ray diffraction analysis and electron microscopy imaging of FDP indicate ca. 10 nm crystalline domains organized in hierarchical micro‐/meso‐porous aggregates exhibiting mesoscopic order with an aggregate particle size up to ca. 5 μm. Al and Sn can be incorporated into the FDP zeolite framework to produce active and selective methanol‐to‐hydrocarbon and glucose isomerization catalysts, respectively.more » « less
An official website of the United States government
